
1. Actionable Flood-Risk Information
Disasters linked to climate change and development have received increasing attention worldwide (Coronese 
et al., 2019; Eckstein et al., 2021). Floods are an especially damaging example of these disasters (Jonkman & 
Vrijling, 2008; Whitfield, 2012). Many organizations expend considerable resources on improving the ability to 
predict and forecast flood events. Predicting floods is challenging as climate and other changes impact flooding 
in complex ways across space and time (Beevers et al., 2020; Sharma et al., 2018; Vorogushyn et al., 2018). 
Decisions by individuals and households can play a critical role in the dynamics and magnitude of risks (Haer 
et al., 2019). Actionable risk information can help decision-makers to better manage risks (e.g., through imple-
menting protective measures) (Hoch & Trigg, 2019; Judi et al., 2018). At the same time, improved information 
can also negatively affect some. For example, designating an area as a high flood-risk zone can reduce property 
values (Daniel et al., 2009). Developing comprehensive information to inform decision-making requires holistic 
information design and usage considerations.

Defining the essential features of actionable information requires consideration of fundamental flood risk char-
acteristics. Flood-risk estimates are often deeply uncertain, meaning “the system model and input parameters 
to the system model are not known or widely agreed on by the stakeholders to the decision” (Lempert, 2002). 
Flood hazards stem from diverse and interacting mechanisms (pluvial, fluvial, or coastal) and vary in magni-
tude and extent across spatial and temporal scales and settings (e.g., urban vs. rural) (Hirabayashi et al., 2013; 
Savage et al., 2016). Existing information sources represent the drivers of risk (hazard, exposure, and vulner-
ability) in different ways (de Moel et al., 2015). Hazard refers to flood extent and depth (Beevers et al., 2020; 
Savage et al., 2016). Exposure characterizes the people and properties at risk for a given hazard, and vulnerability 
describes the sensitivity of risk for exposed people and property (Armal et al., 2020).
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Approaches to estimating flood hazards vary in how and whether they integrate landscape changes, weather 
patterns, and climate change projections (Ward et  al.,  2013; Wing et  al.,  2017). Further, although flood-risk 
dynamics are spatially heterogeneous, standardized and equitable approaches for risk estimates are needed 
to guide flood-risk policy (Emrich et  al.,  2020; Kind et  al.,  2017). Finally, forecasting floods in the days or 
weeks immediately before flood events require different approaches than generating longer-term risk estimates 
(Vorogushyn et al., 2018).

Many socioeconomic factors influence how and whether flood-risk information influences decision-making. 
Regulatory timeframes for updating design standards often lag behind the scientific and technological state-of-the-
art (Luke et al., 2018). Many states do not legally require flood risk disclosures upon the sale of a property. The 
lack of flood disclosure requirements puts potential homebuyers at risk of unknowingly buying a flood-prone 
home (Lightbody & Chapman, 2019). Information providers and users have diverse needs, priorities, and values 
(Hewitt et al., 2021). For example, the prevailing norms of science may lead providers to focus on technical and 
scientific metrics rather than the objective of improving decisions (Findlater et al., 2021). In addition, a growing 
body of evidence suggests that information co-production is crucial to producing credible and relevant informa-
tion (Dilling & Lemos, 2011; Findlater et al., 2021; Soden et al., 2017). Maximizing the usability of information 
in decision-making requires, at a minimum, that the information is designed with high levels of transparency and 
can be accessed easily at no cost.

Existing literature can guide the design of actionable flood-risk information. In this commentary, we summarize 
key features from this literature, compare examples of household-level fluvial flood-risk information sources in 
the United States (US), and discuss research avenues for improvements. We focus on fluvial flood-risk informa-
tion for longer-term projections of flood likelihood and severity for simplicity but recognize that integrating all 
flooding sources and information types is necessary and even more complex.

2. Primary Components of More Comprehensive Fluvial Flood-Risk Information
The flood-risk assessment literature provides detailed insights into the components needed for more comprehen-
sive information. However, regional differences in flood dynamics create variability in the magnitude of impact 
these different components have in influencing flood risk. In Figure 1, we illustrate differences in the primary 
components of a selection of flood-risk information sources. In this section, we describe the components in 
Figure 1 and argue that regional differences in flood-risk dynamics create a need for regional flood-risk assess-
ment frameworks.

Several studies highlight the dominant role of climate in flood peak estimates (Alfieri et  al.,  2018; Wong 
et  al.,  2018). Climate models do not resolve fine-scale hydrometeorological processes (i.e., local weather), 
particularly precipitation extremes (Collet et al., 2018; Nissan et al., 2019). Modelers often use dynamical or 
statistical downscaling methods to generate climate projections for local-scale analyses (Merz et al., 2014). The 
choice of downscaling method (e.g., adopting a statistical or a dynamical approach) has implications for the 
kinds of uncertainty that propagate from climate model outputs to hydrologic and hydraulic models. Combined, 
differences in downscaling techniques and model resolutions can contribute to variations in climate forcing (e.g., 
extreme rainfall) in river flow (hydrologic models). Weather generators provide a potential avenue for producing 
probabilistic inferences about future flooding scenarios and, as a result, offer an alternative to static estimates of 
future flooding (Steinschneider et al., 2019). Downscaling methods and weather generators have limited capa-
bilities to generate high-resolution, precise estimates of global change, but they are necessary for producing 
locally-relevant flood hazard estimates (Qin & Lu, 2014; Steinschneider et al., 2019). As discussed further in 
Section 4, the choice of climate scenario, downscaling techniques, and weather generators propagate uncertainty 
in flood-risk estimates.

Hydrological models help to estimate river flow within a catchment by representing complex dynamics with 
parameters and mathematical equations. River flow estimates provide boundary conditions needed for hydraulic 
models and to generate flood inundation depth and extent estimates. River flow projections establish the bound-
ary condition for the hydraulic models necessary to estimate flood inundation extent and depth (Judi et al., 2018; 
Rajib et al., 2020). Limitations in observational records create challenges when developing models for any catch-
ment (Clark et al., 2017). Because extreme floods occur infrequently, they have minimal data records and require 
modeling with sparsely distributed monitoring infrastructure (Bayazit, 2015). Additional challenges arise when 

Supervision: R. E. Nicholas, K. Keller
Visualization: C. M. Cooper, S. Sharma, 
K. Keller
Writing – original draft: C. M. Cooper, 
S. Sharma
Writing – review & editing: C. M. 
Cooper, S. Sharma, R. E. Nicholas, K. 
Keller



Earth’s Future

COOPER ET AL.

10.1029/2022EF003093

3 of 11

using empirical relationships to characterize conditions in ungauged catchments (Wong et al., 2018). Modeling 
approaches have evolved to include methods for capturing antecedent moisture conditions and model regional 
processes such as snowmelt (Chang & Franczyk, 2008; Judi et al., 2018).

Flood inundation estimates require reliable surface topographic data and geometric representation of the river 
channel (Bures et al., 2019; Dey et al., 2019; Z. Liu & Merwade, 2018). Digital elevation models (DEMs) provide 
detailed topographic data. The quality and resolution of DEMs affect the accuracy of the extracted topographic 
features (Dey et al., 2019). High-resolution DEMs that fully represent the topographic features at local relevant 
scales are often unavailable. Scientists produce high-resolution DEMs by applying remote sensing technology 
such as Light Detection and Ranging (LiDAR) (Hilldale & Raff, 2008). However, LiDAR cannot penetrate the 
water surface to yield bathymetric results and, therefore, cannot capture submerged river channel features (Bures 
et al., 2019). LiDAR and DEM information are often integrated with field-surveyed bathymetry data to improve 
the representation of riverbed topography. The quality of bathymetric data decreases with water depth and river 
turbulence (Z. Liu & Merwade, 2018).

National-scale data about land use/cover are available through the National Land Cover Database (NLCD) (Jin 
et al., 2019). Still, they must be integrated with hydrologic and hydraulic models (Sohl et al., 2016). The NLCD 
is updated every 5 years and provides nationwide data based on 30-m resolution Landsat data. Land cover projec-
tion datasets are available but at coarser spatial resolutions (Sohl et al., 2014). Recent studies have used historical 
land cover datasets to create land-use change scenarios to project historical development trends into the future 
(Alexander et al., 2017). Advancing these efforts may help to identify primary drivers of flood risk.

Figure 1. Flow diagram illustrating an evolution in the level of sophistication of the available information characterizing 
fluvial flood risk in the United States. The outer square (light blue) includes the components that existing literature indicates 
can impact flood risk estimates.
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Vulnerability and exposure are highly dynamic features of flood risk influenced by local policies, governmental 
decisions, and individual actions (Dubbelboer et al., 2017; Hemmati et al., 2021). Changes in vulnerability and 
exposure also alter the frequency and magnitude of flooding (Michaelis et al., 2020). Channelization projects and 
levees can increase community vulnerability by increasing urbanization and floodplain development (Chang & 
Franczyk, 2008). Of course, if flood mitigation structures fail, increased growth (exposure) may amplify losses 
(Di Baldassarre et al., 2015; Haer et al., 2020). The reliability of flood-mitigation infrastructure under future 
climatic conditions is unclear. Although necessary for understanding risk, estimates of exposure and vulnerability 
are subject to false assumptions or bias, threatening the external validity of any source of flood-risk information 
(Michaelis et al., 2020).

Interactions between human decisions and flood hazards are complex and confounded by uncertainty propagation 
in subsequent components of flood-risk. The red dashed arrows in Figure 1 indicate interactions between the 
system components and human decision-making. Available methods for assessing vulnerability and exposure 
often rely on data such as historical insurance claims (Knighton et al., 2020; Mobley et al., 2020; Wing et al., 2020) 
or national scale survey data such as the US Census (Koks et al., 2015; Maldonado et al., 2016; Zhou et al., 2017). 
Modelers often need to translate this data across spatial scales, potentially limiting the applicability for local deci-
sion problems. Further, limited approaches provide insights into future changes due to decision-making. Because 
human decisions impact the climate system, climate information that does not integrate the impacts of human 
decision-making may lead to overconfident estimates of flood risk (Ward et al., 2013).

In this section, we described the primary components of fluvial flood-risk information. Aggregating the many 
system components necessary for estimating flood risk often leads to challenges such as aggregation bias (Pollack 
et al., 2022). Flood-risk estimates vary depending on factors such as the choice of models and data availability. 
The components included here only include those needed for fluvial flood-risks estimates, including coastal and 
pluvial (urban) flooding adds even more uncertainty. A more comprehensive source of flood-risk information 
would integrate each component in Figure 1. As discussed in Section 4, model diagnostics and uncertainty char-
acterization are central to understanding flood-risk estimates.

3. Fluvial Flood-Risk Information in the US
There is a wide range of approaches for estimating fluvial flood risk in the US. In Table 1, we compare a selec-
tion of desirable features for actionable flood-risk information. We include sources that provide or contribute to 
fluvial household flood-risk information at the continental US scale. The considered academic research exam-
ples, while not explicitly developed to aid decision-making, demonstrate variations in design choices. As illus-
trated in Table 1, many opportunities for improvement remain.

Several organizations contribute to developing flood-risk information in the US. Federal standards set by the 
Federal Emergency Management Authority (FEMA) guide the design of Flood Insurance Rate Maps (FIRMs), 
which draw from local flood studies as opposed to flood models (FEMA, 2020). FIRMs, among other purposes, 
are used in FEMA's Risk Rating structure to determine flood insurance rates. FIRMs have many notable short-
comings, including limited spatial coverage and neglecting to account for changing environmental conditions 
(Pralle, 2019; Soden et al., 2017). FEMA recently transitioned to a new risk rating structure, Risk Rating 2.0, 
which aims to represent actuarial risk through a more comprehensive characterization of vulnerability and expo-
sure, which includes the integration of proprietary catastrophe models (Congressional Research Service, 2021). 
Risk Rating 2.0 makes some progress in modernizing FEMA's approach to flood-risk mapping; however, many 
alternative approaches exist.

The First Street Foundation's Flood Factor®, a continental-scale flood-risk model, incorporates climate change 
and pluvial, fluvial, and coastal flood-risk estimates for individual properties (First Street Foundation, 2020). 
Flood Factor® fills some information gaps in FIRMs and provides limited opportunities to compare flood-risk 
estimates from different sources. The approach demonstrates an increase in the number of properties at risk from 
flooding relative to FEMA estimates (Bates et al., 2021). The new information reveals the advantages of applying 
large-scale computational models to provide actionable decision-making information. At the same time, it high-
lights challenges in producing information for applications in local decision-making.

The models used to produce Flood Factor® integrate a subset of the available models and methods. Academic 
research provides different approaches and strategies for characterizing additional components of flood risk 
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(examples include: Judi et  al.,  2018; J. Liu et  al.,  2015; Rajib et  al.,  2020; Wobus et  al.,  2019; Zarekarizi 
et al., 2021). The methods used in these examples demonstrate the diversity of possible approaches for estimating 
flood risk. However, they are not produced through accessible approaches that would enable comparisons of risk 
information between different sources.

4. Uncertainty Characterization and Model Diagnostics Can Simplify Flood-Risk 
Information Frameworks
Uncertainty stems from the choices information producers make about modeling frameworks, distribution param-
eters, and datasets (Bosshard et al., 2013; Collet et al., 2018) and natural variability (e.g., the random nature 
of thunderstorms that drive extreme precipitation) (Kiureghian & Ditlevsen,  2009). Key uncertainty sources 
include model structure, model parameters, channel geometry, surface topography, and human decisions (Beevers 
et al., 2020; Savage et al., 2016). As illustrated in Table 1, information sources often consider a subset of poten-
tially relevant uncertainties, for example, by focusing on uncertainty in flood peaks (Judi et  al.,  2018). Fail-
ing to consider uncertainty can lead to sizable downward biases in risk estimates (Sriver et  al.,  2018; Wong 
et al., 2018) and potentially neglect interactions between uncertainty sources and their propagation into flood risk 
estimates (Bosshard et al., 2013; Z. Liu & Merwade, 2018). In traditional approaches to estimating river flow and 
flood inundation, information producers manually adjust a subset of model parameters to calibrate models (Judi 
et al., 2018; Pianosi et al., 2016). This approximation may fail to identify the decision-relevant parameters and 
can under-sample parametric uncertainty (Keller et al., 2020).

Uncertainty characterization can also help to inform simpler analytical frameworks. Simple analytical frame-
works can be desirable because simpler designs are easier and less costly to reproduce and modify (Helgeson 

Note. A comprehensive source of actionable flood-risk information would include the darkest blue shade for every feature or component. However, improvements may 
still be possible for the darkest blue shades. We show various information sources to exemplify the range of design approaches and the continued opportunities for 
improvement.

Table 1 
Comparison of Available Household Fluvial Flood-Risk Information Sources
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et al., 2020). More complex models often demand, among others, considerable computational resources, special-
ized expertise, additional time and quality control, and larger input datasets (Hewitt et al., 2021; Vorogushyn 
et  al.,  2018). Even with limited uncertainty characterization, the examples in Table  1 already include rather 
complex frameworks. Future information design may benefit from an increased focus on developing simpler 
approaches that can be updated easily as new information and data emerge.

There are many ways to characterize uncertainty that may lead to simpler analytical frameworks. Surrogate 
methods, such as Gaussian process-based emulators, can address parametric uncertainty (Pianosi et al., 2016) 
to identify dominant flood-risk drivers. Although initially challenging to develop, process-based emulators for 
high-dimensional models may help to inform simpler modeling frameworks (Helgeson et  al.,  2020). Recent 
efforts to advance Bayesian Statistical Inference implemented by stochastic algorithms such as a fast sequential 
Markov Chain Monte Carlo (MCMC) provide a probabilistic framework for characterizing parametric uncertain-
ties (Kavetski et al., 2018). Several studies outline the potential of representing uncertainty through multi-model 
systems (Alfieri et al., 2018; Wong et al., 2018). Finally, Bayesian model averaging offers a framework to inte-
grate information based on the credibility of each model output (Keller et al., 2020; Z. Liu & Merwade, 2018). 
Uncertainty characterization and model diagnostics can help to demonstrate pathways for simplifying analytical 
frameworks by identifying decision-relevant uncertainties and quantifying the contribution of individual uncer-
tainty sources (see discussions, e.g., in Beevers et al., 2020; Hall & Solomatine, 2008; Keller et al., 2020; Reed 
et  al.,  2022; Savage et  al.,  2016). Because flood dynamics vary regionally, uncertainty characterization may 
reveal the need for different regional modeling choices.

5. Improving Information Transparency and Accessibility
Challenges for producing actionable information extend beyond design choices. Information transparency is a 
primary factor in the success of democratic governance systems and, therefore, an essential priority in developing 
information to inform decision-making (Elliott, 2020). In addition to ethical considerations, a greater emphasis 
on transparency could advance the capacity for comparing information sources and characterizing uncertainty 
(Hoch & Trigg, 2019). Open science to promote transparency is a complex and multilayered concept (for more 
information, see (Dai et al., 2018; Fecher & Friesike, 2014; Munafò et al., 2017). It broadly ensures “the free 
availability and usability of scholarly publications, the data that result from scholarly research, and the method-
ologies, including code or algorithms, that were used to generate those data” (NASEM, 2018). Data, methods, 
computer codes, analysis plans, conflicts of interest, and value judgments determine information transparency 
(Elliott, 2020).

As illustrated in Table 1, information producers often do not use fully transparent information design processes. 
Academic studies usually must provide open-source code and data by funding agencies or publication outlets, 
although the standards can vary considerably (Dai et al., 2018). Flood Factor® offers accessible decision-making 
information but with limited code and data access. The data is publicly available at aggregated scales (e.g., county 
level); however, the First Street Foundation provides more detailed information through commercial services 
(First Street Foundation, 2020). Although FIRMs are freely accessible, FEMA uses some proprietary information 
in Risk Rating 2.0, and FIRMs rely on local engineering studies (Congressional Research Service, 2021). Reluc-
tance to share code and data can hinder efforts to improve transparency and advance open science.

Across climate science domains, enlisting and maintaining critical and informed providers and users is essential 
for promoting transparency through open science (NASEM,  2018). Funders can help produce and distribute 
open-source information by providing web services for sharing information. For example, SWATShare allows 
users to upload and share models, run simulations, and visualize results (Rajib et al., 2020). Platforms like these 
could facilitate more systematic approaches to uncertainty characterization and model diagnostics. Improved 
online platforms can enable collaboration and decrease barriers to sharing code and data.

Information accessibility is critical in determining how information influences decision-making. Ideally, 
decision-makers can access information easily and for free. Accessible information relies on attributes such as 
well-designed and up-to-date websites (Hewitt et al., 2021; Yarnal et al., 2006). Flooding information provided 
by FEMA is accessible through many interactive online tools (for more information see US Global Change 
Research Program, 2022). These resources require users to visit specific webpages and the information is often 
not provided in a format that directly provides risk information for individual properties.
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The First Street Foundation (through Flood Factor®) uses an alternative approach for providing information. 
In addition to a stand-alone website, it is widely available on real estate websites and enables users to compare 
property-level risk estimates with details provided in FIRMs so users can seamlessly access risk information 
alongside real estate information. Flood Factor® includes information that may protect potential homebuyers 
from purchasing flood-prone properties, particularly in states without flood disclosure laws. On the other hand, 
inaccurate information, such as information that classifies low-risk homes as high-risk, can make low-risk prop-
erties more difficult to sell. As new information emerges and becomes more accessible, questions related to their 
economic ramifications are increasingly important to consider. Few mechanisms are available to evaluate the 
credibility of information disseminated online (Dai et al., 2018; Twomlow et al., 2022).

Visual choices can impact the accessibility of flood-risk information in several ways. Previous research suggests 
slight differences in visual styles can lead to different decisions (Dobson et  al.,  2018; Faulkner et  al.,  2007; 
Galloway et al., 2006). Despite evidence that different visual styles influence decision-making, there is limited 
research evaluating linkages between visual styles and decision-making. In a systematic review of natural disas-
ters and visualization, Twomlow et al. (2022) reported that less than 1% of over 4,500 screened studies addressed 
the social, political, or cultural context to communicate disaster risk. This review suggests that as new visual 
styles emerge, little is known about how they impact decision-making.

The different visual styles used to communicate flood risk could influence how users perceive risk. In Figure 2, 
we illustrate how different visuals may lead decision-makers to varying conclusions about property risk. 
Decision-makers may understand their risk differently across these three panels, even if the underlying hazard 
estimate are identical. FIRMs traditionally present flood zones in “x-year terms” (Figure 2a), meaning a home 
has “at least” the specified level of hazard (e.g., at least a 0.2% chance of flooding in any given year). Culturally, 
this visual style may be most familiar to users because of its prevalence in public policy. In Figure 2b, the FEMA 
flood zones are continuous. Continuous flood hazard probabilities provide a more precise estimate of the flood-
ing likelihood relative to binary flood zones (Figure 2a). Finally, Flood Factor®, in addition to being based on 
different information, uses descriptive risk categories (Figure 2c).

The currently divergent approaches to communicating flood risks can confuse decision-makers. The house labe-
led “1” in this figure falls within the 500-year flood zone in Figure 2a. However, in Figure 2b (continuous flood 

Figure 2. Illustration of the different visual styles used to communicate flood risk. Panel A is similar in style to Federal Emergency Management Authority (FEMA) 
Flood Insurance Rate Maps (FIRMs); Panel B is based on an academic study that visualizes FEMA flood zones as continuous rather than binary; Panel C uses 
descriptive risk labels similar to Flood Factor®.
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probability), House 1 has a higher likelihood of flooding, and in Figure 2c, House 1 has an “extreme risk.” A 
more comprehensive approach to evaluating the links between visual styles and decision-making may help ensure 
that decision-makers understand the full extent of their risk. The increasing availability of online information 
provides opportunities to visualize risk in dynamic environments. Emerging approaches such as agent-based 
models (Haer et al., 2016, 2017) and user-center design (Twomlow et al., 2022) may help to understand the link-
ages between visual styles and decision-making. Communicating information through visual styles that express 
risk drivers and their associated uncertainties can ensure that decision-makers realize the full extent of their 
risk. In the future, systematic approaches to evaluating linkages between information and decision-making could 
provide new insights for risk communication.

6. Legal Acceptability
Legal acceptability is an important feature of actionable risk information. Standards for insurance rates and 
building codes require flood hazard estimates (Congressional Research Service, 2021). Property owners with 
federally-backed mortgages in high-risk flood zones are required to have flood insurance in the US (FEMA, 2020). 
These policies and standards require standardized approaches for producing information over large spatial 
domains. Information such as that provided by Flood Factor®, although not legally binding, provides a risk esti-
mate for properties outside FEMA flood zones and can influence the approaches FEMA uses to produce informa-
tion. Flood-risk design and risk communication choices have important legal ramifications. As such, the features 
outlined in Table 1 are especially critical to include in the design of legally accepted flood-risk information.

7. Conclusions
We focused this discussion on how household scale fluvial flood-risk information can be designed to guide 
adaptation decisions. Even in this simplified example of flood-risk information usability, we noted many ways 
deep uncertainty influences information design. Information producers must choose between many different 
models, datasets, and frameworks and often lack the tools to determine the best choices for a specific decision 
problem. Existing literature indicates that comprehensive flood-risk information would include the components 
in Figure 1. However, no single information source integrates all these components.

Providing transparent and accessible information may require improved collaboration across many organizations 
and scales. Although challenges remain, there are many opportunities for improvement. Collaborative online 
web platforms could help information producers share code and data, improving reproducibility. Systematic 
uncertainty characterization and model diagnostics can lead to simpler designs that enhance the characterization 
of the most influential drivers of flood risks. These drivers may vary regionally, requiring regionalized efforts 
to distinguish the primary risk drivers. Information accessibility may improve when information is communi-
cated through visual styles that express risk drivers and their associated uncertainties. More research is needed 
to understand the linkages between visual styles and decision-making. Continued improvements are especially 
important for information sources with legal implications.
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Erratum
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section, which read “This work was co-supported by the Penn State Initiative for Resilient Communities (PSIRC) 
through a Strategic Plan seed grant from the Penn State Office of the Provost, the Center for Climate Risk 
Management (CLIMA), the Rock Ethics Institute, Penn State Law, and the Hamer Center for Community Design; 
the National Oceanic and Atmospheric Administration, Climate Program Office under NA16OAR4310179; and 
the Earth System Model Development and Regional program areas of the U.S. Department of Energy, Office of 
Science, Office of Biological and Environmental Research as part of the multi-program, collaborative Integrated 
Coastal Modeling (ICoM) project.” The statement has been corrected to read “This work was co-supported by 
the Penn State Initiative for Resilient Communities (PSIRC) through a Strategic Plan seed grant from the Penn 
State Office of the Provost, the Center for Climate Risk Management (CLIMA), the Rock Ethics Institute, Penn 
State Law, and the Hamer Center for Community Design; the National Oceanic and Atmospheric Administra-
tion, Climate Program Office under NA16OAR4310179; and the Multisector Dynamics program area of the 
U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research as part of the 
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